Streamlet: Textbook Streamlined Blockchains

Benjamin Chan
Cornell University

Joint work with Elaine Shi
“Simplifying Consensus”

Benjamin Chan
Cornell University

Joint work with Elaine Shi
1. Modeling consensus (5min)
2. Motivating simplicity as a goal (a few seconds)
3. Our protocol (20min)
1. Modeling consensus (5min)
2. Motivating simplicity as a goal (a few seconds)
3. Our protocol (20min)

Goal: walk away
1. Modeling consensus (5min)
2. Motivating simplicity as a goal (a few seconds)
3. Our protocol (20min)

Goal: walk away
and understand a consensus protocol
What is consensus?
What is consensus? Modeling Blockchain
Modeling Blockchain
Modeling Blockchain

- Some *known* set of users
 - “permissioned”
Modeling Blockchain

Why the permissioned setting?
Modeling Blockchain

Why the permissioned setting?

Answer: Proof-of-Stake
Modeling Blockchain

Why the permissioned setting?

Answer: Proof-of-Stake

Different setting than PoW!!
Modeling Blockchain

Why the permissioned setting?

Answer: Proof-of-Stake

Different setting than PoW!! (true finality, speed, partition-resistant)
Modeling Blockchain

- Some *known* set of users
 - “permissioned”
Modeling Blockchain

- Some known set of users
 - “permissioned”
- Each user maintains ordered chain of blocks
Modeling Blockchain

- Some *known* set of users
 - “permissioned”
- Each user maintains ordered chain of blocks
Modeling Blockchain

- Some *known* set of users
 - “permissioned”
- Each user maintains ordered chain of blocks

- **Consistency**: Everyone sees a prefix of the same chain!
Modeling Blockchain

- Some *known* set of users
 - “permissioned”
- Each user maintains ordered chain of blocks

- **Consistency**
- **Liveness**
Modeling Blockchain

- Some *known* set of users
 - “permissioned”
- Each user maintains ordered chain of blocks

- **Consistency**
- **Liveness:** must be able to confirm new blocks
Introducing adversaries
Introducing adversaries

- Malicious users
Introducing adversaries

- Malicious users
- Messages may be lost, delayed, reordered
Introducing adversaries

- Malicious users
- Messages may be lost, delayed, reordered
This problem is notoriously hard!
This problem is notoriously hard!

- Paxos ('70s)
- PBFT ('99)
- Raft (2014)
This problem is notoriously hard!

- Paxos (‘70s) - “Paxos Made Simple”, “ABCDs of Paxos” (2001)
- PBFT (‘99)
- Raft (2014)
This problem is notoriously hard!

- Paxos ('70s) - “Paxos Made Simple”, “ABCDs of Paxos” (2001)
- PBFT (‘99) - “Hotstuff” (2018)
- Raft (2014)
This problem is notoriously hard!

- **Paxos (‘70s)** - “Paxos Made Simple”, “ABCDs of Paxos” (2001)
- **PBFT (‘99)** - “Hotstuff” (2018)
This problem is notoriously hard!

- Paxos (‘70s) - “Paxos Made Simple”, “ABCDs of Paxos” (2001)
- PBFT (‘99) - “Hotstuff” (2018)
- Raft (2014) - “Raft Refloated: Do We Have Consensus?” (2014)
- Blockchains (2016+)
 - Dfinity
 - Casper
 - Algorand
 - Hotstuff
 - Pala
This problem is notoriously hard!

- Paxos (‘70s) - “Paxos Made Simple”, “ABCDs of Paxos” (2001)
- PBFT (‘99) - “Hotstuff” (2018)
- Raft (2014) - “Raft Refloated: Do We Have Consensus?” (2014)
- Blockchains (2016+)
 - Dfinity
 - Casper
 - Algorand
 - Hotstuff
 - Pala

Can we eliminate the subtlety?
Motivating Simpler Consensus Protocols
Motivating Simpler Consensus Protocols

- Simpler Implementation
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- $$$
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- $$$
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- $$$

blockchain
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- $$$
Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- $$$

By King of Hearts / Wikimedia Commons
Our Work: Streamlet
Our Work: Streamlet

Goal:
A “Simplest Possible”, Easy-to-Understand, Textbook Consensus Protocol
Our Work: Streamlet

Goal:
A “Simplest Possible”, Easy-to-Understand, Textbook Consensus Protocol (Blockchain)
Our Work: Streamlet

Two Assumptions:

1. **Epochs**
 Processes have local clocks, and run in synchronized* epochs of 1 sec each.
Our Work: Streamlet

Two Assumptions:

1. **Epochs**
 Processes have local clocks, and run in synchronized* epochs of 1 sec each.

2. **Elect a leader in each epoch, known by all**
Our Work: Streamlet

Two Assumptions:

1. **Epochs**
 Processes have local clocks,
 and run in synchronized* epochs of 1 sec each.

2. **Elect a leader in each epoch, known by all**
 i.e. randomly chosen, given epoch \(e \)

\[L_e = H(e) \mod n \]
Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

pointer to parent block
Definitions

- Block \(b = (H(b'), e, txs) \)

Assumptions:
- (Synchronized*)
 - epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block \(b = (H(b'), e, txs) \)

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch
 has random leader
Definitions

- Block $b = (H(b'), e, \text{txs})$

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block \(b = (H(b'), e, txs) \)
- Notarized block

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block \(b = (H(b'), e, \text{ txs}) \)
- Notarized block
 - A block ‘signed’ by \(\frac{2}{3} \) distinct processes

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes
 (implies a majority of honest processes have signed it)

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block \(b = (H(b'), e, \text{txs}) \)
- Notarized block
 - A block ‘signed’ by \(\frac{2}{3} \) distinct processes

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block \(b = (H(b'), e, \text{txs}) \)
- Notarized block
 - A block ‘signed’ by \(\frac{2}{3} \) distinct processes

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch
 has random leader

\[\downarrow \quad \text{epoch} \quad 7 \quad \text{epoch} \quad 8 \quad \text{epoch} \quad 10 \quad \text{epoch} \quad 12 \quad \cdots \]
Definitions

- Block $b = (H(b'), e, \text{txs})$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes
- Notarized blockchain

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes
- Notarized blockchain

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes
- Notarized blockchain

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, \text{txs})$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes
- Notarized blockchain
- Block “height” \neq epoch #

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch has random leader
Definitions

- Block $b = (H(b'), e, txs)$
- Notarized block
 - A block ‘signed’ by $\frac{2}{3}$ distinct processes
- Notarized blockchain
- Block “height” \neq epoch #

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
Definitions:
- Block $b = (H(b'), e, txs)$
- Notarized block: signed by 2/3 processes

Assumptions:
- (Synchronized*)
 - Epochs of length 1 sec
- Each epoch
 - Has random leader
The Streamlet Protocol

<table>
<thead>
<tr>
<th>Assumptions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>❏ (Synchronized*) epochs of length 1 sec</td>
</tr>
<tr>
<td>❏ Each epoch has random leader</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definitions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>❏ Block (b = (H(b'), e, txs))</td>
</tr>
<tr>
<td>❏ Notarized block: signed by 2/3 processes</td>
</tr>
</tbody>
</table>
The Streamlet Protocol

In every epoch $e = 1, 2, \ldots$

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions:
- Block $b = (H(b'), e, txs)$
- Notarized block: signed by 2/3 processes
The Streamlet Protocol

In every epoch $e = 1, 2, \ldots$

- **leader**, creates a new block $b = (H(b'), e, \text{txs})$
 extending longest notarized chain they’ve seen so far

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch
 has random leader

Definitions:
- Block $b = (H(b'), e, \text{txs})$
- Notarized block: signed by 2/3 processes
The Streamlet Protocol

In every epoch $e = 1, 2, \ldots$

- **leader**, creates a new block $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen so far

- **voters**, signs first proposal b (from leader, for e) i.f.f. b extends a longest notarized chain seen so far (by voter)

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions:
- Block $b = (H(b'), e, \text{txs})$
- Notarized block: signed by 2/3 processes
The Streamlet Protocol

finalization rule:

- Block $b = (H(b'), e, \text{txs})$
- Notarized block: signed by 2/3 processes

Assumptions:
- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions:
The Streamlet Protocol

finalization rule:
take any notarized chain that ends in 3 consecutive epochs;

Assumptions:
- (Synchronized*)
 epochs of length 1 sec
- Each epoch has random leader

Definitions:
- Block $b = (H(b'), e, \text{txs})$
- Notarized block: signed by 2/3 processes
The Streamlet Protocol

finalization rule: take any notarized chain that ends in 3 consecutive epochs; chop off the last block, and finalize

<table>
<thead>
<tr>
<th>Assumptions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Synchronized*) epochs of length 1 sec</td>
</tr>
<tr>
<td>Each epoch has random leader</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definitions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block $b = (H(b'), e, txs)$</td>
</tr>
<tr>
<td>Notarized block: signed by 2/3 processes</td>
</tr>
</tbody>
</table>
In every epoch \(e = 1, 2, \ldots \)

- leader proposes \(b = (H(b'), e, \text{txs}) \) extending longest notarized chain they’ve seen
- voters sign the first valid proposal \(b \),
 but i.f.f. \(b \) also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Example

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but if.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Example (3 honest, 1 malicious)

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Example (3 honest, 1 malicious)

In every epoch \(e = 1, 2, \ldots \)
- **leader** proposes \(b = (H(b'), e, \text{txs}) \) extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal \(b \),
 but i.f.f. \(b \) also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$
- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Example

In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$:

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Analysis

Consistency: no synchrony assumptions, $f < n/3$

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Analysis

Consistency: no synchrony assumptions, $f < n/3$

Liveness: synchrony assumptions, expected $O(1)$ rounds!

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Analysis

Consistency: no synchrony assumptions, $f < n/3$

Liveness: synchrony assumptions, expected $O(1)$ rounds!

(optimizable)

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Example

In every epoch \(e = 1, 2, \ldots \)

- **leader** proposes \(b = (H(b'), e, \text{txs}) \) extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal \(b \),
 but i.f.f. \(b \) also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen

- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, txs)$ extending longest notarized chain they’ve seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=$2/3$ votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

Finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch \(e = 1, 2, \ldots \)

- **leader** proposes \(b = (H(b'), e, \text{txs}) \) extending longest notarized chain they've seen
- **voters** sign the first valid proposal \(b \), but i.f.f. \(b \) also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Example

In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Allows two notarized blocks at the same height!
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, txs)$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$
- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

Finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen.
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes).

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block.
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=$2/3$ votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Consistency Sketch

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Lemma 1: Each epoch is associated with at most one notarized block.
Lemma 1: *Each epoch is associated with at most one notarized block.*
Lemma 1: Each epoch is associated with at most one notarized block.

Consistency Sketch

Cannot both be notarized!!
Lemma 1: Each epoch is associated with at most one notarized block.

Proof:
- Each honest process votes only once for each epoch.
Lemma 1: Each epoch is associated with at most one notarized block.

Proof:
- Each honest process votes only once for each epoch.
- Each notarized block requires $2n/3$ distinct votes.
Lemma 1: Each epoch is associated with at most one notarized block.

Proof:
- Each honest process votes only once for each epoch.
- Each notarized block requires $2n/3$ distinct votes.
- Multiple notarized blocks within epoch $= 4n/3$ votes.

Consistency Sketch

Cannot both be notarized!!
Lemma 1: Each epoch is associated with at most one notarized block.

Proof:
- Each honest process votes only once for each epoch.
- Each notarized block requires $2n/3$ distinct votes.
- Multiple notarized blocks within epoch $= 4n/3$ votes.
- Letting $f < n/3$, we have (at best) $2n/3 + 2f < 4n/3$ votes to go around.

Consistency Sketch
Lemma 1: Each epoch is associated with at most one notarized block.

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Lemma 1: Each epoch is associated with at most one notarized block.

Consistency Sketch

In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Lemma 1: Each epoch is associated with at most one notarized block.

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Consistency Sketch

In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Consistency Sketch

Now, the main lemma...
Consistency Sketch

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen

- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen.
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Consistency Sketch

In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:
Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize
Consistency Sketch

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize

voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case X > 7:

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize

voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X < 5$:

Case $X > 7$:

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize

voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Proof (Pf): Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block $\rightarrow\leftarrow$

Case X > 7:

4 processes, 3 honest, 1 malicious
Require 3 votes to notarize

- Voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X < 5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X > 7$:

Consistency Sketch
Lemma 2: No other notarized block, in past or future, can share the same height as block 6.

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block -><-

Case X > 7:
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block \(-\geq\)

Case X > 7:

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block -><-

Case X > 7:
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block \rightarrow \leftarrow

Case X > 7:
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block \(-\rightarrow\)

Case X > 7: Signed 7, then X \(-\rightarrow\)
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X < 5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X > 7$: Signed 7, then X -><-

Intuition: Can’t rewrite history
Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block -><-

Case X > 7: Signed 7, then X -><-

Intuition: Can’t rewrite history

(can add a new notarized block at the same height as an existing notarized block, but never in the past)
Lemma 1: Each epoch is associated with at most one notarized block.

Lemma 2: No other notarized block, in past or future, can share the same height as block 6.
Lemma 1: Each epoch is associated with at most one notarized block.

Lemma 2: No other notarized block, in past or future, can share the same height as block 6.

Lemma 3: All longer notarized chains, in any view, must extend block 6.
Lemma 1: Each epoch is associated with at most one notarized block.

Lemma 2: No other notarized block, in past or future, can share the same height as block 6.

Lemma 3: All longer finalized chains, in any view, must extend block 6.
Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

Lemma 2: No other notarized block, in past or future, can share the same height as block 6.

Lemma 3: All longer finalized chains, in any view, must extend block 6.

No synchrony assumptions!
1. Can’t rewrite history
2. One block per epoch
3. Demonstrate sudden chain growth
1. Can’t rewrite history
2. One block per epoch
3. Demonstrate sudden chain growth
 = chain provably longer than competitors
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch \(e = 1, 2, \ldots \):

- **leader** proposes \(b = (H(b'), e, \text{txs}) \) extending longest notarized chain they've seen
- **voters** sign the first valid proposal \(b \),
 but i.f.f. \(b \) also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch \(e = 1, 2, \ldots \):

- **leader** proposes \(b = (H(b'), e, \text{txs}) \) extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal \(b \),
 but i.f.f. \(b \) also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Liveness?

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- leader proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, txs)$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Liveness?

We need many good leaders in a row
Liveness?

We need many good leaders in a row

- Random leaders: get lucky
- Stable leader mechanism
- Not bad!
Recap

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Recap

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen

- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=$2/3$ votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: “Simplest-Possible”, Drop-in replacement for PBFT
Recap

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: “Simplest-Possible”, Drop-in replacement for PBFT

Result: Consensus with a single message type, minimal subtlety
Recap

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: “Simplest-Possible”, Drop-in replacement for PBFT

Result: Consensus with a single message type, minimal subtlety
- **Consistency**: $f < n/3$, no synchrony assumptions!
Recap

In every epoch $e = 1, 2, \ldots$
- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)

Finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: “Simplest-Possible”, Drop-in replacement for PBFT

Result: Consensus with a single message type, minimal subtlety
- **Consistency:** $f < n/3$, no synchrony assumptions!
- **Liveness:** when network is reliable (GST model)
Recap

In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, txs)$ extending longest notarized chain they've seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: “Simplest-Possible”, Drop-in replacement for PBFT

Result: Consensus with a single message type, minimal subtlety
- **Consistency**: $f < n/3$, no synchrony assumptions!
- **Liveness**: when network is reliable (GST model)

Eprint: ia.cr/2020/088
In every epoch $e = 1, 2, \ldots$

- **leader** proposes $b = (H(b'), e, \text{txs})$ extending longest notarized chain they’ve seen
- **voters** sign the first valid proposal b,
 but i.f.f. b also extends a longest notarized chain the **voter** has seen (notarized=2/3 votes)

Goal: “Simplest-Possible”, Drop-in replacement for PBFT

Result: Consensus with a single message type, minimal subtlety
- **Consistency**: $f < n/3$, no synchrony assumptions!
- **Liveness**: when network is reliable (GST model)

Eprint: ia.cr/2020/088