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What is an RSA Modulus?

N = p ⋅ q

Biprime - product of exactly two primes



Why? RSA History
• 1977 - RSA Public-Key Encryption 

• 1999 - Paillier Public-Key Encryption  

• 2001 - CRS for UC setting 

• 2018 - Verifiable Delay Functions (VDF)

Ethereum 2.0 = 
Proof of Stake!



• 1996 - Rivest-Shamir-Wagner 
timelock puzzle 

• 2018 - VDF constructions by 
Pietrzak, Wesolowski

Why? VDF construction

y = g2Tmod N



Goal
Parties interact to jointly sample a 
bi-prime modulus N

N



Goal
Each party has secret shares of N’s 
factors: p, q

pA, qA

pB, qB

pF, qF

pC, qC

pE, qE

pD, qD

N



1024 parties 
+ 

(n-1) active security
Need just 1 honest participant….

Goal



Previous Works: Overview
Milestone Work Adversary Parties

Corruption 
Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

[HMRT12] Active n t < n

[FLOP18] Active 2 t = 1

[CCD+20] Active n t < n



Previous Works in Our Setting 
Active + n-Party + Dishonest Majority

Milestone Work Adversary Parties
Corruption 
Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

[HMRT12] Active n t < n

[FLOP18] Active 2 t = 1

[CCD+20] Active n t < n



Previous Works: Implementations
Milestone Work Adversary Parties

Corruption 
Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

Passive impl. only [HMRT12] Active n t < n

Passive impl. only [FLOP18] Active 2 t = 1

[CCD+20] Active n t < n



[FLOP18]
RSA Modulus Size 2048 bits

Implementation Passive
Num Parties 2

Party Spec 8 GB RAM 
8 cores CPU

Bandwidth 40 Gbps

Online Comm.  
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art

Let’s do 
better!
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(Per-Party) >1.9 GB
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Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2 1024

Party Spec 8 GB RAM 
8 cores CPU

2 GB RAM
single-core CPU

Bandwidth 40 Gbps 1 Mbps
100 ms latency

Online Comm.  
(Per-Party) >1.9 GB < 100 MB

Time 35 sec (8 thread) < 20 mins



Protocol Blueprint



Step 1: Design protocol secure 
against passive adversary 
 

Step 2: Compile to security 
against active adversary 
 



Step 1: scalable 
passive protocol



Boneh-Franklin Framework 
[BF97]

1. Candidates & 
Trial division

N

2. Mult

0,1

3. Biprimality 
Testing

pi, qi
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Boneh-Franklin Framework 
[BF97]

1. Candidates & 
Trial division

N

2. Mult

0,1

3. Biprimality 
Testing

pi, qi

Is N the product 
of two primes?

N = (∑
i

pi) ⋅ (∑
i

qi)Parties choose 
pi, qi randomly



1. Candidates & 
Sieving 2. Mult

3. Biprimality 
Testing

Start with sieving trick



Candidate Trial Division: Prior Works

HMRTN12

FLOP18 Uses 1-out-of-k OT

Uses El Gamal

1. Pick p and q shares.  
2. Joint Trial division.  
3. If both pass, multiply.



Candidate Trial Division [Bru50]

Pr[A |B] ≈ ( 1
500 )

A = randomly sampling a 1024-bit prime  
B = prime is odd

Pr[sample biprime |B] ≈ ( 1
500 )

2

Need 250k samples in expectation,  
Large multiplication for N



Candidate Construction: Chinese 
Remainder Theorem (CRT)

.

.

.

3

5

7

mt

≅

CRT 
Reconstruction 
Algorithm

Πt mt

Modular Reduction

Moduli 
are 
relatively 
prime!



Candidate Construction:  
Sieving Trick [CCD+20]

.

.

.

3

5

7

mt

≅

CRT 
Reconstruction 
Algorithm

Modular Reduction

0 ≠

0 ≠

0 ≠

0 ≠ Not divisible by 
the first t primes!

Πt mt



Candidate Trial Division [Bru50]

Pr[A |B]

A = randomly sampling a 1024-bit prime  
B = sieve up to 863, the 150th prime

Pr[sample biprime |B]

Need 3600 samples in expectation,  
Construct N using a series of small mults

≈ ( 1
60 )

≈ ( 1
60 )

2



Add Multiplier

2. Mult1. Candidates & 
Trial division

3. Biprimality 
Testing



a1, b1 ∈ ℤ2ℓ

c1 c2

c1 + c2 = (∑ ai) ⋅ (∑ bi)

MUL

Secure Multiplication

a2, b2 ∈ ℤ2ℓ



Our Approach: Threshold AHE

•Distributed Key Generation


•Encryption


•Distributed decryption

EncPK(m)

m = Decsk1
(c) + … + Decskn

(c)

Public key:      Secret keys: PK sk1, …, skn



Our Approach: Threshold AHE

•Addition under encryption


•Scalar multiplication under 
encryption

EncPK(m1) + EncPK(m2) = EncPK(m1 + m2)

a ⋅ EncPK(m) = EncPK(a ⋅ m)



Our Approach: Coordinator

C

• Untrusted 

• Does public 
operations (AHE 
Aggregations) 

• Not in party 
count



Our Approach: Coordinator

C
1TB RAM 

128-core CPU 

10Gbps

• Untrusted 

• Does public 
operations (AHE 
Aggregations) 

• Not in party 
count



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)
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Key Generation

Encrypt pi
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State-of-the-Art TAHE
Paillier?  
• Circular choice 

El Gamal?  
• Inefficient decryption (discrete log) 

From LWE? 
• Does not support all AHE operations

From Ring-LWE. 
• Supports AHE, better parameters, packing



3. Biprimality 
Testing

[BF97]’s Biprimality Test

1. Candidates & 
Trial division 2. Mult

• Test whether N is the product of two primes 
• Don’t leak p or q 
• Based on Miller-Rabin primality test [Rabin80] 

• Probabilistic - need to repeat s times



Step 2: Security 
against active 
adversaries



GMW paradigm

aka ”I will prove I did everything honestly!”
aka Zero-Knowledge Proofs



GMW Paradigm: Passive Protocol

P1 P2

x1, r1 x2, r2

m1

mk

.

.

.



GMW Paradigm: Active Protocol

P1 P2

x1, r1 x2, r2Commit Commit

m1

mk

ZK

ZK

.

.

.



GMW Paradigm: Our compiler

P1 P2

Commit Commit

m1

mk

ZK

.

.

.

x1, r1 x2, r2



ZK Considerations

• Lattices - Operations in Ring  
ZQ = Zp1 x … x Zp21 

• Modulus generation - Operations in  
Z2, Z3, Z5, …, Z823 

• Jacobi test - Operations in  
Z*N (2048-bit number)



ZK Schema

Commit( randTAHE, randshares )
Party i Coordinator

Passive Protocol

 Commit( randsigma )

 Sigma-protocol proof

ZK Proof that all actions are correct 



Needs:
• Memory efficient 

• Supports commit-and-prove 

• Versatile: composable!

Ligero [AHIV17] + Sigma [Sho00]

What ZK protocol to use?



Ligero
• Range proofs on noise for Ring-LWE 

• Other proofs - Correctness of everything else 

Sigma
• Correctness of Jacobi test (for biprimality 

testing)

The proofs



• only AGGREGATES 

• has no inputs or randomness 

• publishes transcript, thus publicly verifiable

Coordinator security



Summary: Our Protocol
Key Setup

Generate Candidates

Compute Products

Biprimality test

Generate threshold keys

Sample pre-approved primes

Use TAHE to compute candidates

BF biprimality test

Certification Ligero ZK + Sigma



Performance Metrics:  
10,000 parties (passive)



Performance Metrics:  
1024 parties (active)

Stage Timing Per Step Cumulative Time
Passive Protocol 5m 19s 5m 19s
ZK Proof Generation 7m 16s 12m 35s

ZK Verification 7m 24s 12m 43s

Passive Ceremony

ZK Proof Generation

ZK Verification

Timing (s)
0 200 400 600 800

444s

436s

319s

319
319



VDF Day Trial Run
Spec

• ~25 parties (VDF day attendees!)  
• Coordinator on AWS 

• 2 runs. Passive succeeded, but active didn’t complete. 
Takeaways

• We previously tested on AWS + (few real life parties) 
• Identifiable abort requires rigorous testing 

• Thanks to VDF day, we learned a lot about real world 
conditions 

• Stay tuned, for next demo!



Conclusion
[FLOP18] Our Goal

Modulus size 2048 bits 2048 bits
Implementation Passive Active
Num Parties 2 1024

Party Spec 8 GB RAM 
8 cores CPU

2 GB RAM
single-core CPU

Network speed 40 Gbps 1 Mbps
100 ms latency

Online Comm.  
(Per-Party) >1.9 GB < 100 MB 200 MB

Time 35 sec (8 thread) < 20 mins



Thank You


