Diogenes: Lightweight Scalable RSA Modulus Generation with a Dishonest Majority

Megan Chen

Ligero and Northeastern University

Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi shelat, Muthu Venkitasubramaniam, Ruihan Wang

What is an RSA Modulus?

$N = p \cdot q$

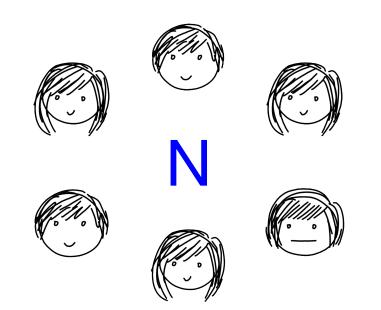
Biprime - product of exactly two primes

Why? RSA History

- 1977 RSA Public-Key Encryption
- 1999 Paillier Public-Key Encryption
- 2001 CRS for UC setting
- 2018 Verifiable Delay Functions (VDF)

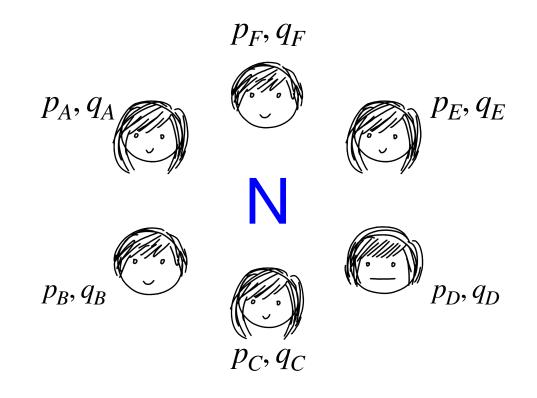
Ethereum 2.0 = Proof of Stake!

Why? VDF construction


 1996 - Rivest-Shamir-Wagner timelock puzzle

$$y = g^{2^{T}} mod(N)$$

 2018 - VDF constructions by Pietrzak, Wesolowski



Parties interact to jointly sample a bi-prime modulus N

Goal

Each party has secret shares of N's factors: p, q

1024 parties + (n-1) active security

Need just 1 honest participant....

Previous Works: Overview

Milestone	Work	Adversary	Parties	Corruption Threshold
First Work	[BF97]	Passive	n >= 3	t < n/2
	[FMY98]	Active	n	t < n/2
	[PS98]	Active	2	t = 1
Based on OT	[Gil99]	Passive	2	t = 1
	[ACS02]	Passive	n	t < n/2
	[DM10]	Active	3	t = 1
	[HMRT12]	Active	n	t < n
	[FLOP18]	Active	2	t = 1
	[<mark>C</mark> CD+20]	Active	n	t < n

Previous Works in Our Setting Active + n-Party + Dishonest Majority

Corruption

	[<mark>C</mark> CD+20]	Active	n	t < n
	[FLOP18]	Active	2	t = 1
	[HMRT12]	Active	n	t < n
	[DM10]	Active	3	t = 1
	[ACS02]	Passive	n	t < n/2
Based on OT	[Gil99]	Passive	2	t = 1
	[PS98]	Active	2	t = 1
	[FMY98]	Active	n	t < n/2
First Work	[BF97]	Passive	n >= 3	t < n/2
Milestone	Work	Adversary	Parties	Corruption Threshold

Previous Works: Implementations

Milestone	Work	Adversary	Parties	Corruption Threshold
First Work	[BF97]	Passive	n >= 3	t < n/2
	[FMY98]	Active	n	t < n/2
	[PS98]	Active	2	t = 1
Based on OT	[Gil99]	Passive	2	t = 1
	[ACS02]	Passive	n	t < n/2
	[DM10]	Active	3	t = 1
Passive impl. only	/ [HMRT12]	Active	n	t < n
Passive impl. only	[FLOP18]	Active	2	t = 1
	[<mark>C</mark> CD+20]	Active	n	t < n

	[FLOP18]	
RSA Modulus Size	2048 bits	
Implementation	Passive	
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	Let's do better!
Bandwidth	40 Gbps	
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	
Implementation	Passive	
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

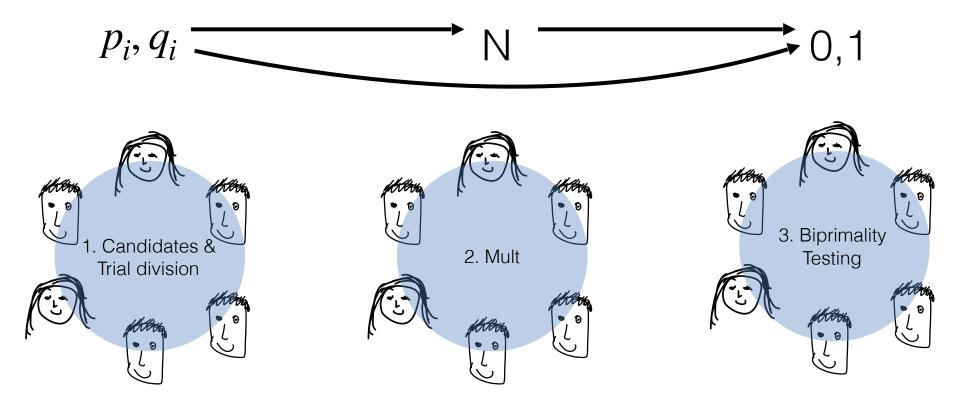
	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

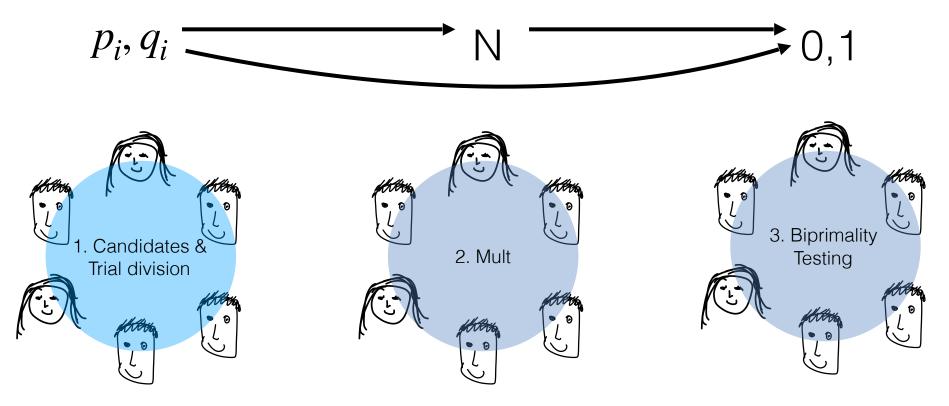
	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	1 Mbps 100 ms latency
Online Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 thread)	

	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	1 Mbps 100 ms latency
Online Comm. (Per-Party)	>1.9 GB	< 100 MB
Time	35 sec (8 thread)	

	[FLOP18]	Our Goal
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	1 Mbps 100 ms latency
Online Comm. (Per-Party)	>1.9 GB	<100 MB
Time	35 sec (8 thread)	< 20 mins

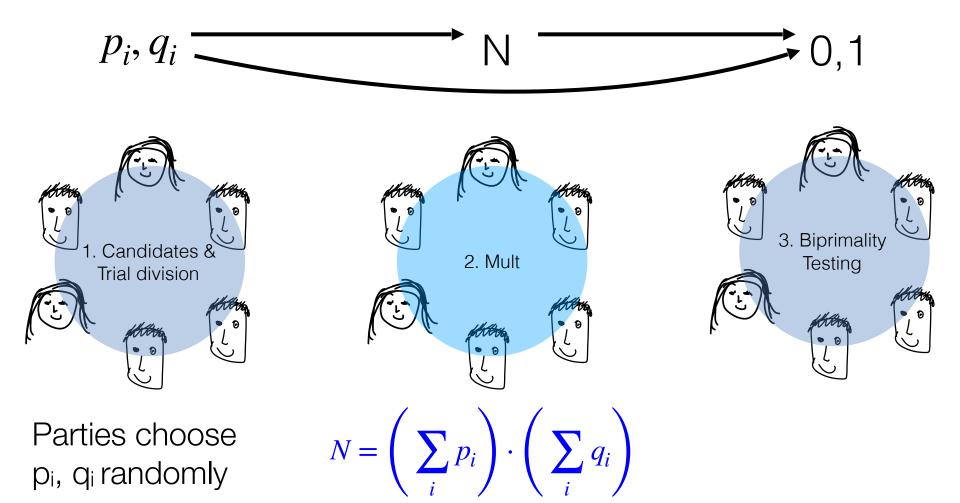

Protocol Blueprint

Step 1: Design protocol secure against passive adversary

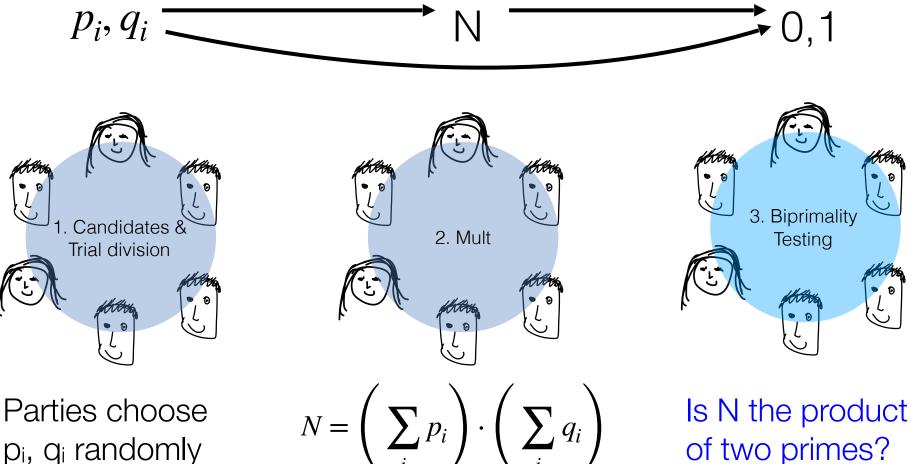

Step 2: Compile to security against active adversary

Step 1: scalable passive protocol

Boneh-Franklin Framework

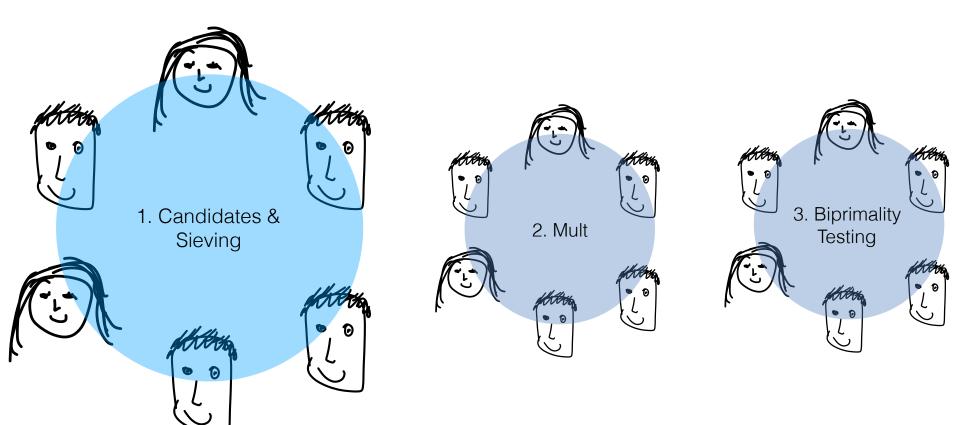


Boneh-Franklin Framework



Parties choose p_i, q_i randomly

Boneh-Franklin Framework



Boneh-Franklin Framework [BF97]

pi, qi randomly

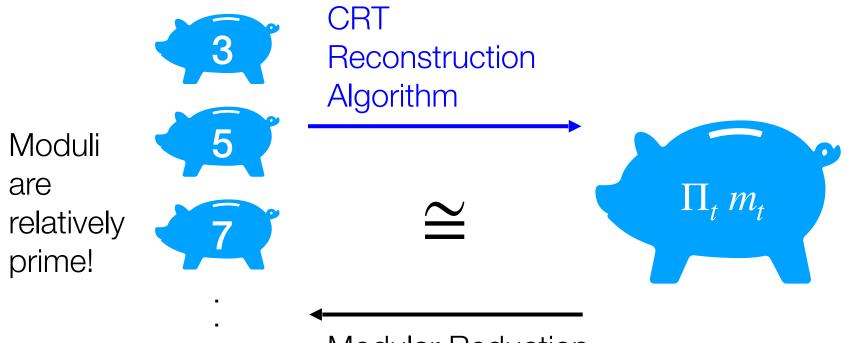
Start with sieving trick

Candidate Trial Division: Prior Works

- 1. Pick p and q shares.
- 2. Joint Trial division.
- 3. If both pass, multiply.

HMRTN12 Uses El GamalFLOP18 Uses 1-out-of-k OT

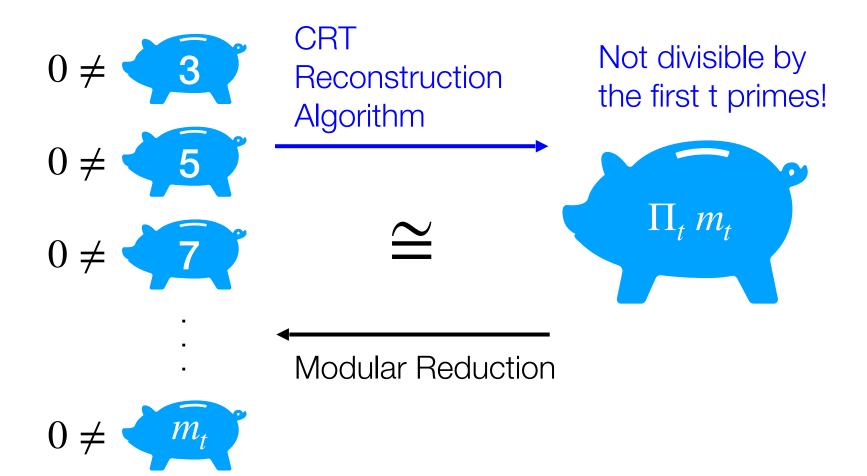
Candidate Trial Division [Bru50]


- A = randomly sampling a 1024-bit prime
- B = prime is odd

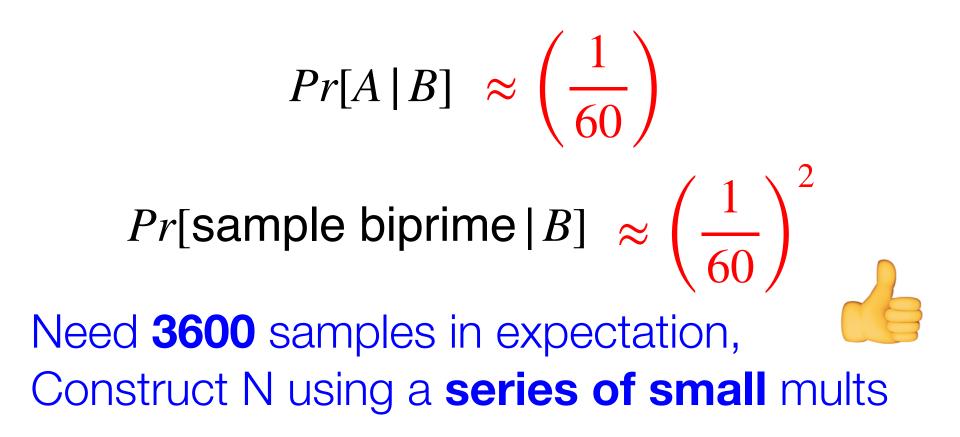
$$Pr[A \mid B] \approx \left(\frac{1}{500}\right)$$

$$Pr[\text{sample biprime} \mid B] \approx \left(\frac{1}{500}\right)^2$$

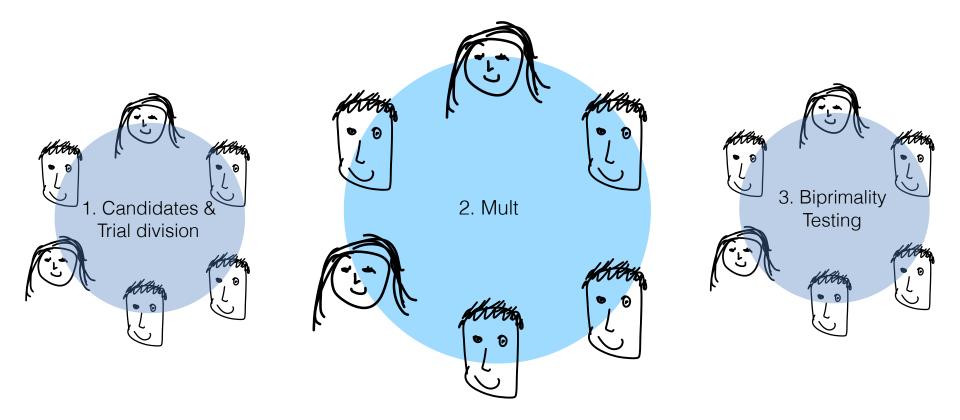
Need **250k** samples in expectation, **Large** multiplication for N


Candidate Construction: Chinese Remainder Theorem (CRT)

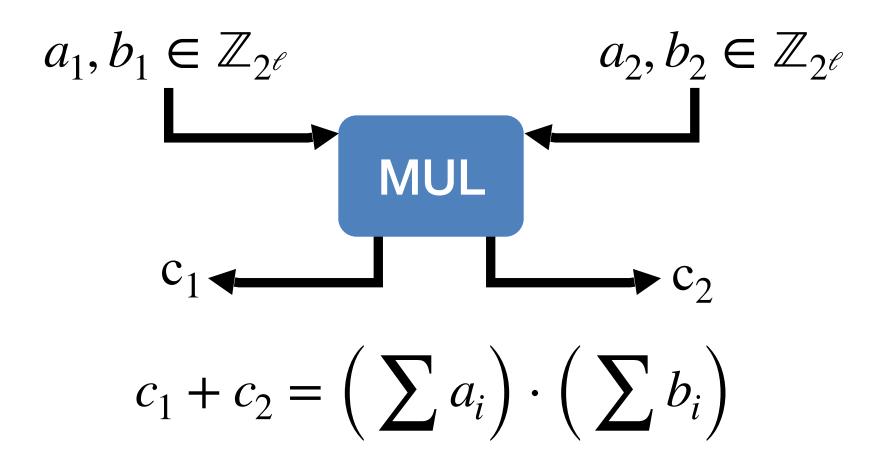
Modular Reduction



Candidate Construction: Sieving Trick [CCD+20]



Candidate Trial Division [Bru50]


- A = randomly sampling a 1024-bit prime
- B = sieve up to 863, the 150th prime

Add Multiplier

Secure Multiplication

Our Approach: Threshold AHE

Distributed Key Generation

Public key: PK Secret keys: sk_1, \ldots, sk_n

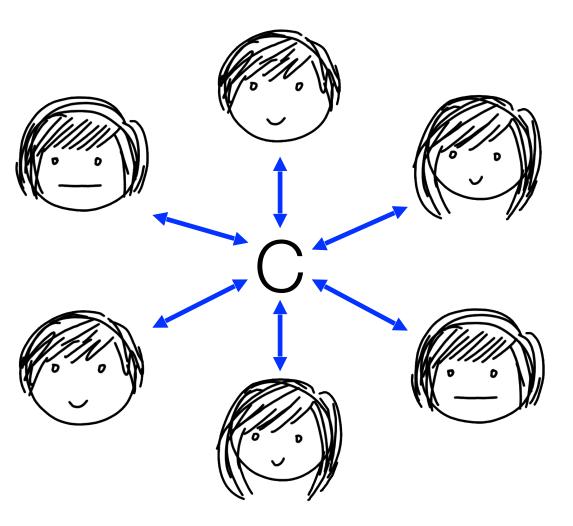
Encryption

 $Enc_{PK}(m)$

Distributed decryption

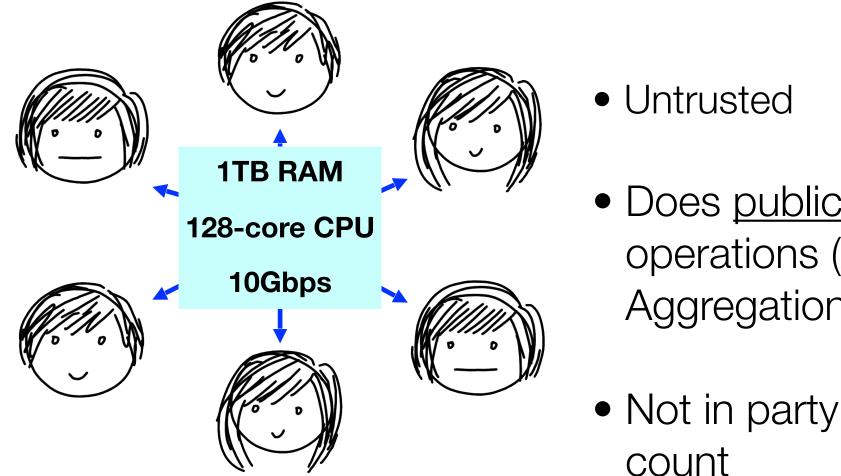
 $m = \mathsf{Dec}_{sk_1}(c) + \ldots + \mathsf{Dec}_{sk_n}(c)$

Our Approach: Threshold AHE


Addition under encryption

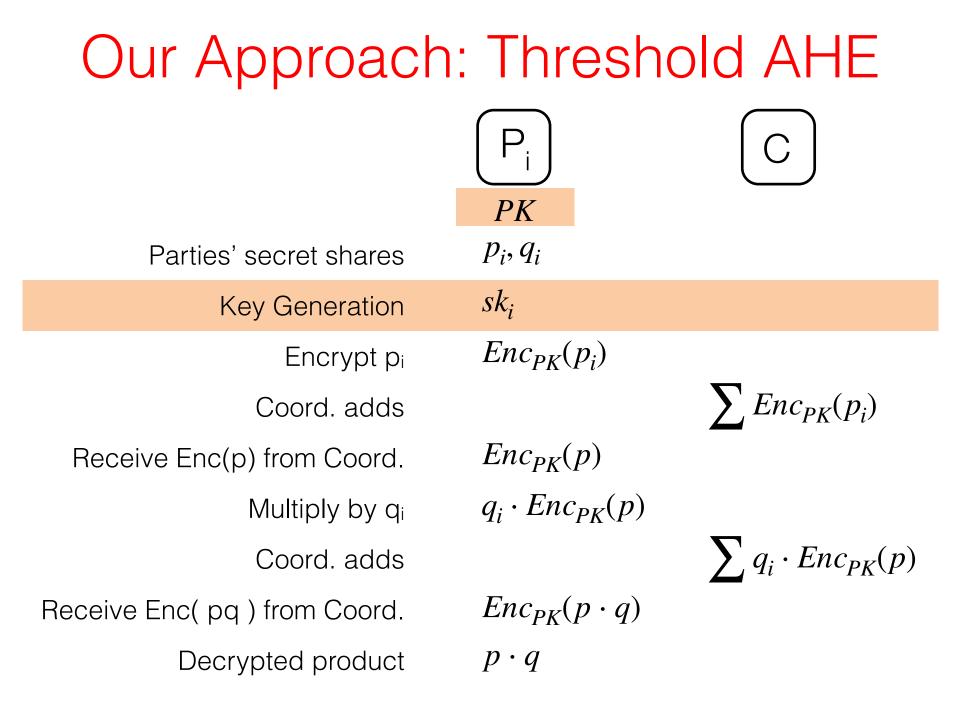
 $Enc_{PK}(m_1) + Enc_{PK}(m_2) = Enc_{PK}(m_1 + m_2)$

 Scalar multiplication under encryption


 $a \cdot \operatorname{Enc}_{PK}(m) = \operatorname{Enc}_{PK}(a \cdot m)$

Our Approach: Coordinator

- Untrusted
- Does <u>public</u> operations (AHE Aggregations)
- Not in party count

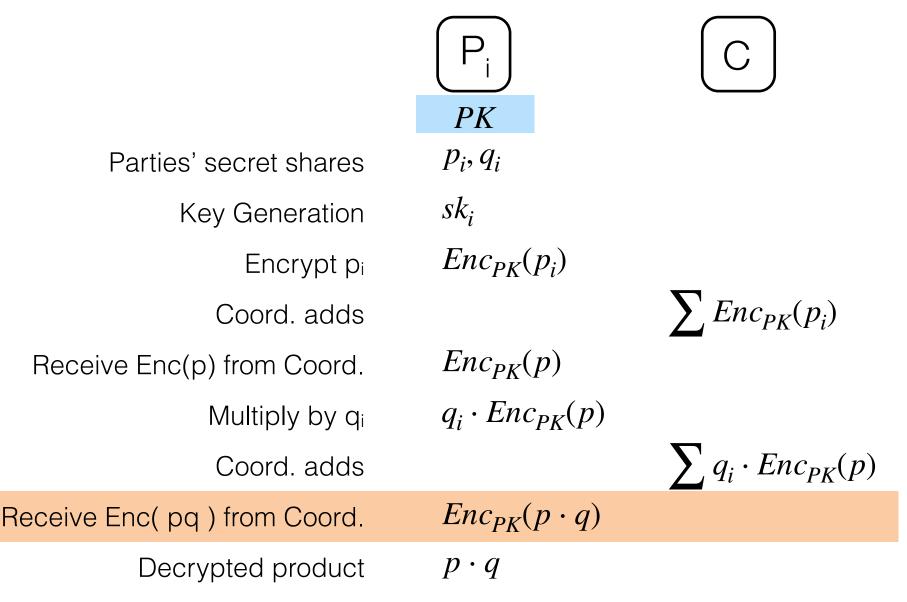

Our Approach: Coordinator

 Does <u>public</u> operations (AHE Aggregations)

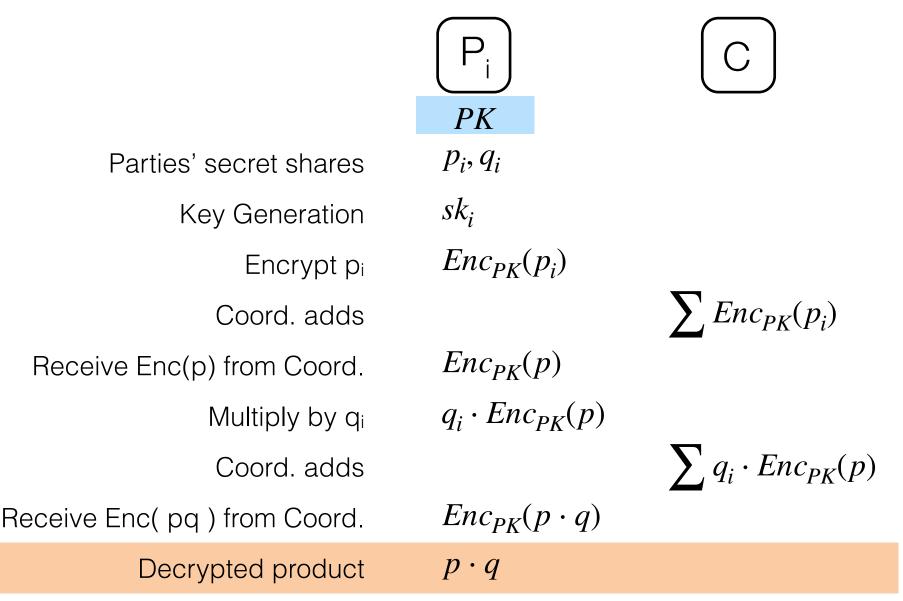
Our Approach: Threshold AHE P_i C

Parties' secret shares	p_i, q_i	
Key Generation	sk _i	
Encrypt p _i	$Enc_{PK}(p_i)$	
Coord. adds	$\sum Enc_{PK}(p_i)$	
Receive Enc(p) from Coord.	$Enc_{PK}(p)$	
Multiply by q _i	$q_i \cdot Enc_{PK}(p)$	
Coord. adds	$\sum q_i \cdot Enc_{PK}(p)$	1
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$p \cdot q$	

Our Approach: Threshold AHE		
	$\left(P_{i} \right)$ $\left(C \right)$	
	PK	
Parties' secret shares	p_i, q_i	
Key Generation	sk _i	
Encrypt p _i	$Enc_{PK}(p_i)$	
Coord. adds	$\sum Enc_{PK}(p_i)$	
Receive Enc(p) from Coord.	$Enc_{PK}(p)$	
Multiply by q _i	$q_i \cdot Enc_{PK}(p)$	
Coord. adds	$\sum q_i \cdot Enc_{PK}(p)$	
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$p \cdot q$	


Our Approach: Threshold AHE		
	$\left(P_{i} \right)$	С
	PK	
Parties' secret shares	p_i, q_i	
Key Generation	sk _i	
Encrypt pi	$Enc_{PK}(p_i)$	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	$Enc_{PK}(p)$	
Multiply by q _i	$q_i \cdot Enc_{PK}(p)$	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$p \cdot q$	

Our Approach: Threshold AHE		
	$\left(P_{i} \right)$ $\left(C \right)$	
	PK	
Parties' secret shares	p_i, q_i	
Key Generation	sk _i	
Encrypt p _i	$Enc_{PK}(p_i)$	
Coord. adds	$\sum Enc_{PK}(p_i)$	
Receive Enc(p) from Coord.	$Enc_{PK}(p)$	
Multiply by q _i	$q_i \cdot Enc_{PK}(p)$	
Coord. adds	$\sum q_i \cdot Enc_{PK}(p)$	
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$p \cdot q$	


Our Approach: Threshold AHE		
	Pi	С
	PK	
Parties' secret shares	p_i, q_i	
Key Generation	sk _i	
Encrypt p _i	$Enc_{PK}(p_i)$	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	$Enc_{PK}(p)$	
Multiply by qi	$q_i \cdot Enc_{PK}(p)$	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$p \cdot q$	

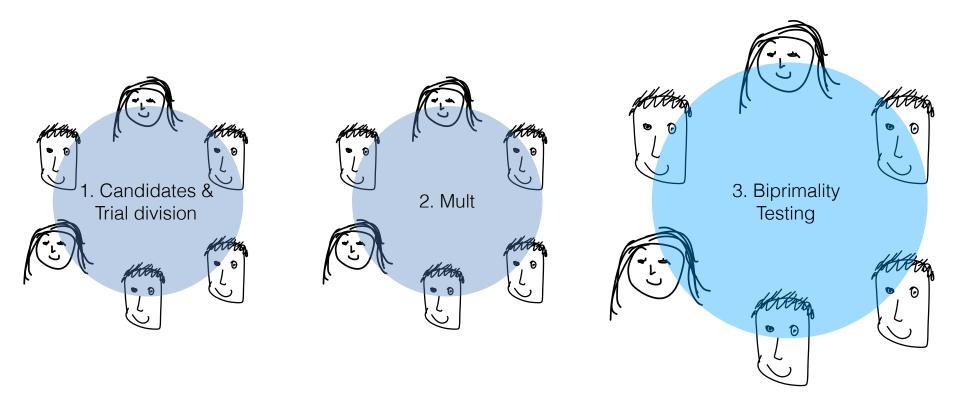
Our Approach: Threshold AHE PK p_i, q_i Parties' secret shares sk_i Key Generation $Enc_{PK}(p_i)$ Encrypt pi $\sum Enc_{PK}(p_i)$ Coord. adds $Enc_{PK}(p)$ Receive Enc(p) from Coord. $q_i \cdot Enc_{PK}(p)$ Multiply by q_i $\sum q_i \cdot Enc_{PK}(p)$ Coord. adds $Enc_{PK}(p \cdot q)$ Receive Enc(pq) from Coord. $p \cdot q$ Decrypted product

Our Approach: Threshold AHE

Our Approach: Threshold AHE

State-of-the-Art TAHE

- Paillier?
- Circular choice
- El Gamal?
- Inefficient decryption (discrete log)

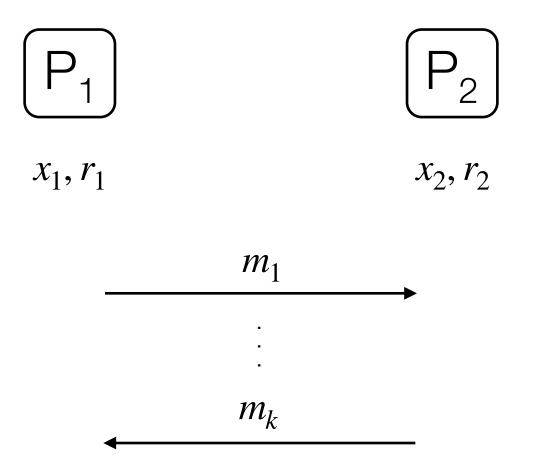

From LWE?

• Does not support all AHE operations

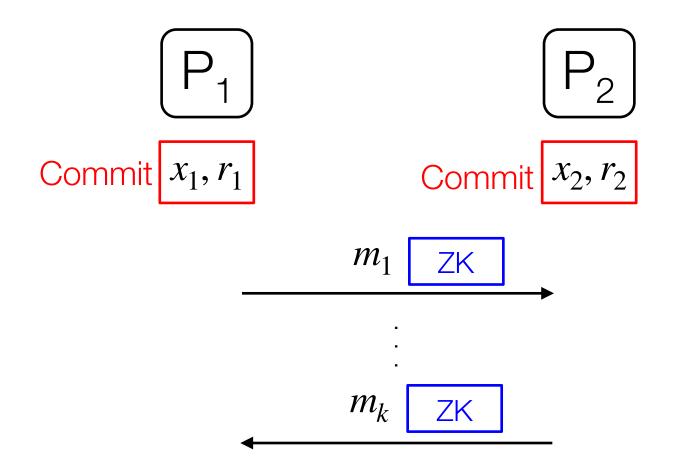
From Ring-LWE.

• Supports AHE, better parameters, packing

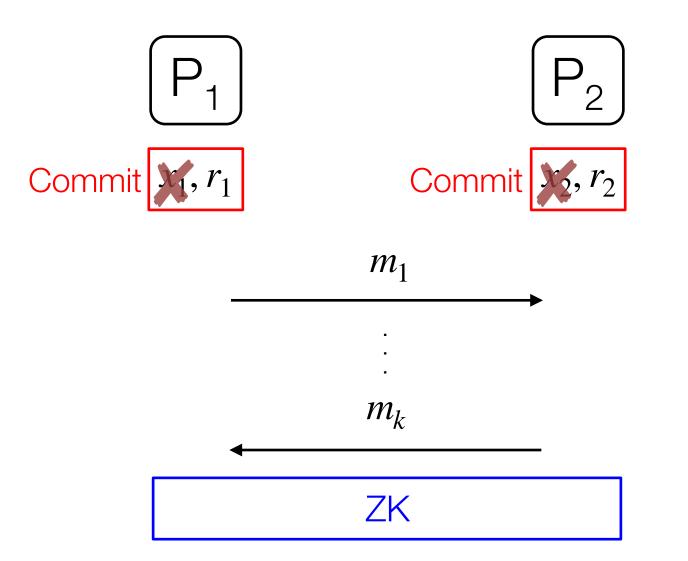
[BF97]'s Biprimality Test


- Test whether N is the product of two primes
- Don't leak p or q
- Based on Miller-Rabin primality test [Rabin80]
- Probabilistic need to repeat s times

Step 2: Security against active adversaries

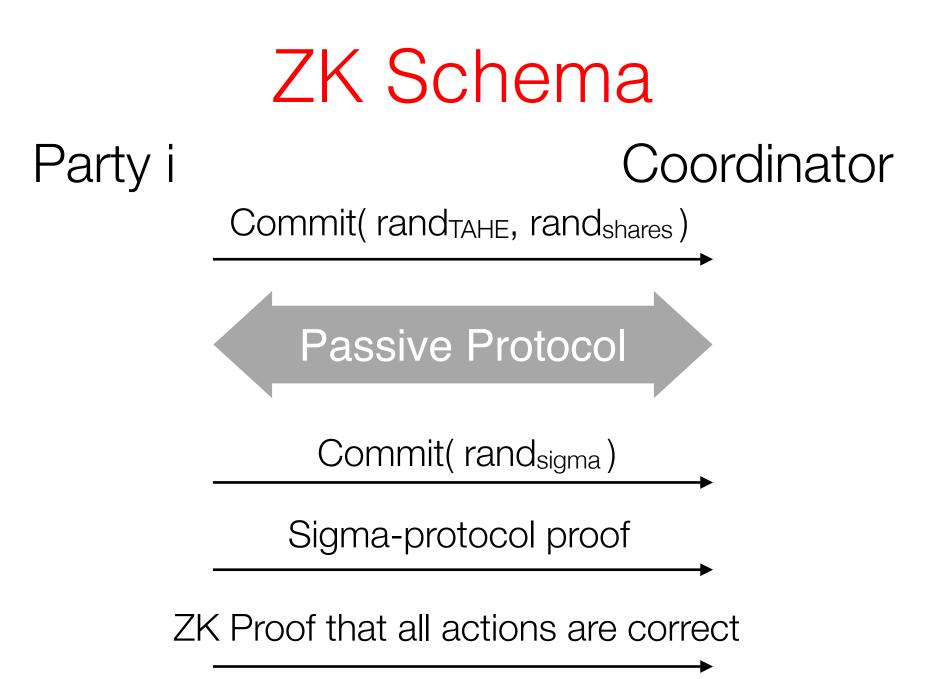

GMW paradigm

aka Zero-Knowledge Proofs aka "I will prove I did everything honestly!"


GMW Paradigm: Passive Protocol

GMW Paradigm: Active Protocol

GMW Paradigm: Our compiler



ZK Considerations

- Lattices Operations in Ring $Z_Q = Z_{p1} \times ... \times Z_{p21}$
- Modulus generation Operations in

$$Z_2, Z_3, Z_5, \ldots, Z_{823}$$

 Jacobi test - Operations in Z^{*}_N (2048-bit number)

What ZK protocol to use?

Needs:

- Memory efficient
- Supports commit-and-prove
- Versatile: composable!

Ligero [AHIV17] + Sigma [Sho00]

The proofs

Ligero

- Range proofs on noise for Ring-LWE
- Other proofs Correctness of everything else

Sigma

Correctness of Jacobi test (for biprimality testing)

Coordinator security

- only AGGREGATES
- has no inputs or randomness
- publishes transcript, thus publicly verifiable

Summary: Our Protocol

Key Setup Generate threshold keys

Generate Candidates Sample pre-approved primes

Compute Products Use TAHE to compute candidates

Biprimality test BF biprimality test

Certification Ligero ZK + Sigma

Performance Metrics: 10,000 parties (passive)

Parties	Coordinator	Total time (s)
64	m5.metal	61.8
128	"	74.3
256	"	104.8
512	"	137.6
1024	"	205.8
1500	r5.24xlarge	266.8
2000	"	416.5
4500	"	1282.6
10000	"	2111.8

Performance Metrics: 1024 parties (active)

Stage	Timing Per	Step	Cumu	lative Time
Passive Protocol	5m	19s		5m 19s
ZK Proof Generatio	n 7m	16s		12m 35s
ZK Verification	7m	24s		12m 43s
		I		
Passive Ceremony	319s			
ZK Proof Generation			436s	
ZK Verification	'		444s	
0	200	400	600	800
		Timing (s)		

VDF Day Trial Run

Spec

- ~25 parties (VDF day attendees!)
- Coordinator on AWS
- 2 runs. Passive succeeded, but active didn't complete.

Takeaways

- We previously tested on AWS + (few real life parties)
- Identifiable abort requires rigorous testing
- Thanks to VDF day, we learned a lot about real world conditions
- Stay tuned, for next demo!

Conclusion

	[FLOP18]	Our Goal
Modulus size	2048 bits	2048 bits
Implementation	Passive	Active
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Network speed	40 Gbps	1 Mbps 100 ms latency
Online Comm. (Per-Party)	>1.9 GB	X< 100 MB 200 MB
Time	35 sec (8 threa	(d) < 20 mins

Thank You