
Diogenes: Lightweight Scalable
RSA Modulus Generation with a

Dishonest Majority

Megan Chen
Ligero and Northeastern University

Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere,
abhi shelat, Muthu Venkitasubramaniam, Ruihan Wang

What is an RSA Modulus?

N = p ⋅ q

Biprime - product of exactly two primes

Why? RSA History
• 1977 - RSA Public-Key Encryption

• 1999 - Paillier Public-Key Encryption

• 2001 - CRS for UC setting

• 2018 - Verifiable Delay Functions (VDF)

Ethereum 2.0 =
Proof of Stake!

• 1996 - Rivest-Shamir-Wagner
timelock puzzle

• 2018 - VDF constructions by
Pietrzak, Wesolowski

Why? VDF construction

y = g2Tmod N

Goal
Parties interact to jointly sample a
bi-prime modulus N

N

Goal
Each party has secret shares of N’s
factors: p, q

pA, qA

pB, qB

pF, qF

pC, qC

pE, qE

pD, qD

N

1024 parties
+

(n-1) active security
Need just 1 honest participant….

Goal

Previous Works: Overview
Milestone Work Adversary Parties

Corruption
Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

[HMRT12] Active n t < n

[FLOP18] Active 2 t = 1

[CCD+20] Active n t < n

Previous Works in Our Setting
Active + n-Party + Dishonest Majority

Milestone Work Adversary Parties
Corruption
Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

[HMRT12] Active n t < n

[FLOP18] Active 2 t = 1

[CCD+20] Active n t < n

Previous Works: Implementations
Milestone Work Adversary Parties

Corruption
Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

Passive impl. only [HMRT12] Active n t < n

Passive impl. only [FLOP18] Active 2 t = 1

[CCD+20] Active n t < n

[FLOP18]
RSA Modulus Size 2048 bits

Implementation Passive
Num Parties 2

Party Spec 8 GB RAM
8 cores CPU

Bandwidth 40 Gbps

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art

Let’s do
better!

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits

Implementation Passive
Num Parties 2

Party Spec 8 GB RAM
8 cores CPU

Bandwidth 40 Gbps

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive
Num Parties 2

Party Spec 8 GB RAM
8 cores CPU

Bandwidth 40 Gbps

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2

Party Spec 8 GB RAM
8 cores CPU

Bandwidth 40 Gbps

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2 1024

Party Spec 8 GB RAM
8 cores CPU

Bandwidth 40 Gbps

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2 1024

Party Spec 8 GB RAM
8 cores CPU

2 GB RAM
single-core CPU

Bandwidth 40 Gbps

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2 1024

Party Spec 8 GB RAM
8 cores CPU

2 GB RAM
single-core CPU

Bandwidth 40 Gbps 1 Mbps
100 ms latency

Online Comm.
(Per-Party) >1.9 GB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2 1024

Party Spec 8 GB RAM
8 cores CPU

2 GB RAM
single-core CPU

Bandwidth 40 Gbps 1 Mbps
100 ms latency

Online Comm.
(Per-Party) >1.9 GB < 100 MB

Time 35 sec (8 thread)

Previous Works: State of the Art
[FLOP18] Our Goal

RSA Modulus Size 2048 bits 2048 bits
Implementation Passive Active (Id-A)
Num Parties 2 1024

Party Spec 8 GB RAM
8 cores CPU

2 GB RAM
single-core CPU

Bandwidth 40 Gbps 1 Mbps
100 ms latency

Online Comm.
(Per-Party) >1.9 GB < 100 MB

Time 35 sec (8 thread) < 20 mins

Protocol Blueprint

Step 1: Design protocol secure
against passive adversary

Step 2: Compile to security
against active adversary

Step 1: scalable
passive protocol

Boneh-Franklin Framework
[BF97]

1. Candidates &
Trial division

N

2. Mult

0,1

3. Biprimality
Testing

pi, qi

Boneh-Franklin Framework
[BF97]

1. Candidates &
Trial division

N

2. Mult

0,1

3. Biprimality
Testing

pi, qi

Parties choose
pi, qi randomly

Boneh-Franklin Framework
[BF97]

1. Candidates &
Trial division

N

2. Mult

0,1

3. Biprimality
Testing

pi, qi

N = (∑
i

pi) ⋅ (∑
i

qi)Parties choose
pi, qi randomly

Boneh-Franklin Framework
[BF97]

1. Candidates &
Trial division

N

2. Mult

0,1

3. Biprimality
Testing

pi, qi

Is N the product
of two primes?

N = (∑
i

pi) ⋅ (∑
i

qi)Parties choose
pi, qi randomly

1. Candidates &
Sieving 2. Mult

3. Biprimality
Testing

Start with sieving trick

Candidate Trial Division: Prior Works

HMRTN12

FLOP18 Uses 1-out-of-k OT

Uses El Gamal

1. Pick p and q shares.
2. Joint Trial division.
3. If both pass, multiply.

Candidate Trial Division [Bru50]

Pr[A |B] ≈ (1
500)

A = randomly sampling a 1024-bit prime
B = prime is odd

Pr[sample biprime |B] ≈ (1
500)

2

Need 250k samples in expectation,
Large multiplication for N

Candidate Construction: Chinese
Remainder Theorem (CRT)

.

.

.

3

5

7

mt

≅

CRT
Reconstruction
Algorithm

Πt mt

Modular Reduction

Moduli
are
relatively
prime!

Candidate Construction:
Sieving Trick [CCD+20]

.

.

.

3

5

7

mt

≅

CRT
Reconstruction
Algorithm

Modular Reduction

0 ≠

0 ≠

0 ≠

0 ≠ Not divisible by
the first t primes!

Πt mt

Candidate Trial Division [Bru50]

Pr[A |B]

A = randomly sampling a 1024-bit prime
B = sieve up to 863, the 150th prime

Pr[sample biprime |B]

Need 3600 samples in expectation,
Construct N using a series of small mults

≈ (1
60)

≈ (1
60)

2

Add Multiplier

2. Mult1. Candidates &
Trial division

3. Biprimality
Testing

a1, b1 ∈ ℤ2ℓ

c1 c2

c1 + c2 = (∑ ai) ⋅ (∑ bi)

MUL

Secure Multiplication

a2, b2 ∈ ℤ2ℓ

Our Approach: Threshold AHE

•Distributed Key Generation

•Encryption

•Distributed decryption

EncPK(m)

m = Decsk1
(c) + … + Decskn

(c)

Public key: Secret keys: PK sk1, …, skn

Our Approach: Threshold AHE

•Addition under encryption

•Scalar multiplication under
encryption

EncPK(m1) + EncPK(m2) = EncPK(m1 + m2)

a ⋅ EncPK(m) = EncPK(a ⋅ m)

Our Approach: Coordinator

C

• Untrusted

• Does public
operations (AHE
Aggregations)

• Not in party
count

Our Approach: Coordinator

C
1TB RAM

128-core CPU

10Gbps

• Untrusted

• Does public
operations (AHE
Aggregations)

• Not in party
count

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Our Approach: Threshold AHE
Pi

pi, qi

ski

EncPK(pi)

EncPK(p)
qi ⋅ EncPK(p)

EncPK(p ⋅ q)
p ⋅ q

C
PK

∑ EncPK(pi)

∑ qi ⋅ EncPK(p)

State-of-the-Art TAHE
Paillier?
• Circular choice

El Gamal?
• Inefficient decryption (discrete log)

From LWE?
• Does not support all AHE operations

From Ring-LWE.
• Supports AHE, better parameters, packing

3. Biprimality
Testing

[BF97]’s Biprimality Test

1. Candidates &
Trial division 2. Mult

• Test whether N is the product of two primes
• Don’t leak p or q
• Based on Miller-Rabin primality test [Rabin80]

• Probabilistic - need to repeat s times

Step 2: Security
against active
adversaries

GMW paradigm

aka ”I will prove I did everything honestly!”
aka Zero-Knowledge Proofs

GMW Paradigm: Passive Protocol

P1 P2

x1, r1 x2, r2

m1

mk

.

.

.

GMW Paradigm: Active Protocol

P1 P2

x1, r1 x2, r2Commit Commit

m1

mk

ZK

ZK

.

.

.

GMW Paradigm: Our compiler

P1 P2

Commit Commit

m1

mk

ZK

.

.

.

x1, r1 x2, r2

ZK Considerations

• Lattices - Operations in Ring
ZQ = Zp1 x … x Zp21

• Modulus generation - Operations in
Z2, Z3, Z5, …, Z823

• Jacobi test - Operations in
Z*N (2048-bit number)

ZK Schema

Commit(randTAHE, randshares)
Party i Coordinator

Passive Protocol

 Commit(randsigma)

 Sigma-protocol proof

ZK Proof that all actions are correct

Needs:
• Memory efficient

• Supports commit-and-prove

• Versatile: composable!

Ligero [AHIV17] + Sigma [Sho00]

What ZK protocol to use?

Ligero
• Range proofs on noise for Ring-LWE

• Other proofs - Correctness of everything else

Sigma
• Correctness of Jacobi test (for biprimality

testing)

The proofs

• only AGGREGATES

• has no inputs or randomness

• publishes transcript, thus publicly verifiable

Coordinator security

Summary: Our Protocol
Key Setup

Generate Candidates

Compute Products

Biprimality test

Generate threshold keys

Sample pre-approved primes

Use TAHE to compute candidates

BF biprimality test

Certification Ligero ZK + Sigma

Performance Metrics:
10,000 parties (passive)

Performance Metrics:
1024 parties (active)

Stage Timing Per Step Cumulative Time
Passive Protocol 5m 19s 5m 19s
ZK Proof Generation 7m 16s 12m 35s

ZK Verification 7m 24s 12m 43s

Passive Ceremony

ZK Proof Generation

ZK Verification

Timing (s)
0 200 400 600 800

444s

436s

319s

319
319

VDF Day Trial Run
Spec

• ~25 parties (VDF day attendees!)
• Coordinator on AWS

• 2 runs. Passive succeeded, but active didn’t complete.
Takeaways

• We previously tested on AWS + (few real life parties)
• Identifiable abort requires rigorous testing

• Thanks to VDF day, we learned a lot about real world
conditions

• Stay tuned, for next demo!

Conclusion
[FLOP18] Our Goal

Modulus size 2048 bits 2048 bits
Implementation Passive Active
Num Parties 2 1024

Party Spec 8 GB RAM
8 cores CPU

2 GB RAM
single-core CPU

Network speed 40 Gbps 1 Mbps
100 ms latency

Online Comm.
(Per-Party) >1.9 GB < 100 MB 200 MB

Time 35 sec (8 thread) < 20 mins

Thank You

